Cooperative Autonomous Robots

(with search and rescue applications)

Project Report
Students:

Adam Salisbury, Austin Scott, Bryan McKinney, and Rob Ruber

Advisors:

Dr. Huggins, Dr. Stewart, and Dr. Malinowski

May 18, 2007
Abstract

The objective of this project is to design and implement cooperative autonomous robots for a search and rescue application. This is achieved through the use of a mobile robot and a stand alone laptop. Cooperative behavior is simulated as the robot maps and searches an environment for a victim and the laptop acts a secondary robot. Information such as sonar data, victim location, and robot information is communicated from robot to laptop and vice versa. The goals of this project include the creation of an accurate map given simulated and real sonar data from the robot, smooth autonomous navigation throughout a room, and the location and retrieval of a victim.

Table of Contents
1. Introduction

 3
2. System Description 3
2.1 System Block Diagram & Functional Description 3
2.2 Robot Modes 4
2.3 Search Mode 4
2.4 Map Mode 6
2.5 Rescue Mode 7
2.6 Communication Mode 7
3. Digital Image Processing 8
3.1 Acquiring the original image 9
3.2 The Color Planes 10
3.3 Noise Reduction 11
3.4 Edge Detection 12
3.5 Dilation 13
3.6 Template Generator 13
3.7 The Correlation Method 14
3.8 Finding the Angle and Distance 15
3.9 Communication between Matlab and C++ 16
4. Communication 16
4.1 Ad hoc 16
4.2 UDP Multicasting 16
5. Mapping 17
5.1 Mapviewer 18
6. Results 19
6.1 Navigation 19

6.2 Mapping 20

6.3 Digital Image Processing 20

6.4 Communication 21

6.5 Future Work 21

7. Conclusion 22

References 23

1. Introduction
The goal of the project was to design and implement a cooperative autonomous robot for a search and rescue application. The robot will search an unknown terrain for certain objects (“victims”) that are located in the environment. The task will be accomplished with the robot mapping the area and communicating with a stand alone laptop or another robot. The robot will communicate an updated map, its current position, position of victims, and the possible need for help with saving victims. The goal is to build and program the robot to simulate a search and rescue application. This is a first year project in the EE department and will provide a starting point for improvements and additions for further projects in the area of autonomous robotics.

The major components of this project result in the design and implementation of three major areas of study. These areas include mapping, searching, and communicating. By implementing these three areas the project will demonstrate a simple autonomous design of a search and rescue robot

2 System Description

2.1 System Block Diagram & Functional Description

The overall system block diagram is shown in Figure 2-1 and depicts the inputs to and outputs from ‘N’ identical robots. For each robot the outputs include the action of wheel rotation, movement, and tool manipulation. Tool manipulation will be the action of grasping the victim with a gripper located on the front of the robot. The inputs are tool feedback, data collected from the camera, sensor inputs, and user inputs. The camera and sensor inputs will be discussed in more detail in the next section. The COM inputs and COM outputs are digital signals transmitted via a wireless link. Finally, the robots will have a display panel to give the user updates and retrieve user inputs when necessary.

[image: image30.png]

Figure 2-1 – Overall System Block Diagram

2.2 Robot Modes
Each individual robot has been programmed to operate in the following three modes: map, search, and rescue. Figure 2-2 details the flow of the three modes. The robot begins in the search mode in which it searches for the target(s). If no victim is found, the robot enters the map mode. The robot then moves along a right wall according to a preprogrammed obstacle avoidance algorithm. While moving ahead the robot is simultaneously mapping the boundaries and the obstacles it encounters. The map information is then sent intermittently to another robot, and in this year’s project, a stand alone laptop. After traveling 1.5 meters the robot will stop and return to search mode. When a victim is found, the robot will then enter rescue mode. This mode allows the robot to approach the victim and then return it to the starting point. The three modes work together to accomplish the task of building a map, avoiding obstacles, and finding and rescuing a victim.

[image: image2.emf]START UP

SEARCH

COM

Map

Rescue

Victim

Found?

No

Yes

Figure 2-2 – High Level Software Flowchart

2.3 Search Mode

In order for the robot to search for the victim (a 12 oz. can in this project) it must first do a series of 30 degree turns. It starts by making a 90 degree turn to the left. It then takes the first of seven pictures. If there is not a victim in that picture it turns 30 degrees right and takes a second picture. It does this until a victim is found or until it has completed a 180 degree rotation. This process can be seen in Figure 2-3.

Each picture is run through a digital image processing algorithm to determine if a victim is located in the picture. The camera mounted on the robot is interfaced to the computer and the pictures are read into Matlab using Dorgem. Dorgem takes a still image from the camera and puts the image to a local host website. Matlab is then able to access this picture and the Digital Image Processing (DIP) can begin. This process is discussed in detail later in section 3. In general, the DIP allows Matlab to locate the victim. Then the information as to the location of the victim is sent to the robot’s control software. Once this happens, the robot can then use that information to retrive the victim.

The search mode is responsible for calling the digital image processing algorithms and returning the values to be examined. The search mode is called every time the robot has reached a checkpoint and is looking for a victim.

[image: image3.wmf]SEARCH

Capture Image

Victim Found

?

RESCUE

Yes

Rotate Robot

30

°

Right

No

Total Rotation

 =

180

°

?

No

Rotate Robot back

to initial position

Yes

MAP

Rotate

90

°

 left

Figure 2-3 – Search Mode Flowchart

2.4 Map Mode

Map mode is the majority of the robot’s code. The C++ code written for the robot can be found on the project website [1]. The core of this algorithm focuses on moving the robot along a right wall and keeping a relative distance from it. While navigating along the right wall it also uses obstacle avoidance to make sure it remains a safe distance from anything in its way. While following the right wall the robot has moves through a series of thresholds to remain a safe distance from the wall. The robot can also be easily programmed to follow the left wall as well. Figure 2-4 shows the thresholds used to keep the robot a set distance from the right wall.

[image: image4]
Figure 2-4 Thresholds from the right wall

 If the robot is within .3 meters of the right wall it will begin taking a series of small left turns to move out of this region. If the robot moves .5 meters from the wall it repeats the process except making small right turns. The final threshold is 1 meter from the wall. In the case that the robot gets that far from a wall it has been assumed that it no longer has a wall directly to the right. In this case the robot needs to simulate a 90˚ turn to follow the wall. This is accomplished by making a large series of turns until a wall had been located on the right side of the robot. It will then resume the series of thresholds to follow the new right wall.
This mode is also responsible for the obstacle avoidance. As the robot is moving forward it is always recording the ultrasonic sensor data. If the data from the front rings records anything lower than .65 meters, the robot will begin to slow down. The robot will continue to decrease its speed until it is .45 meters away from the obstacle in which case it will stop. After the robot has stopped it will check to see if there is an obstacle .6 meters to the left. If there is an obstacle to the front and left, the robot will do a 180˚ turn and use the left obstacle as the new right wall. If an obstacle does not exist to the left, the robot will make a 90˚ turn and begin using the front obstacle as the new right wall.
By using the series of thresholds and obstacle avoidance algorithms, the robot can safely travel around the parameter of the room. For most rooms and hallways, following the perimeter will allow the robot to find a victim at any point inside the room. The robot will continue to follow the right walls until a victim is found. When a victim is found the robot will move into rescue mode.

2.5 Rescue Mode

In rescue mode, the goal of the robot is to return the victim back to the original starting point. The robot begins by taking the information about the victim from Matlab. The information includes whether the victim has been found, the quadrant of the victim, the angle to turn, and the distance to travel. When the robot receives the information from Matlab it determines whether the victim has been found. It then uses the information to turn the correct angle to approach the victim. Once the robot has turned the desired amount, it approaches the victim and funnels the victim into the grippers. Finally the robot calculates where it is from the origin and then makes the desired movements to get there. At this point, the robot makes a straight path to the entry point and has no obstacle avoidance. In the future this mode would have obstacle avoidance and be more sophisticated, but time was a factor and it did not get completed. The rescue process can be seen in Figure 2-5.

[image: image5.emf]Rescue

Turn Robot to Face

Victim

Move Distance to Victim

Return to Initial Starting

Point

Figure 2-5 – Rescue Mode Flowchart

2.5 Communication Mode

The communication mode allows the robot to communicate wirelessly with another robot, or in this case of this project stationary laptop wirelessly. This process sends and receives information to and from the laptop. The robot sends all of the sonar data to the other computer so it is able to make a map of what has been discovered. The details of communication will be discussed later in detail in section 4. The communication process can be seen in Figure 2-5.

[image: image6.emf]COMMUNICATION

Communication

Objectives

Retrieve Map

Information

Send Map

Information

Make Map

Make Map

Figure 2-5 – Communication Mode Flowchart

33. Digital Image Processing

The digital image process for the project is done using matlab. The objective of the matlab code is to determine the distance and angle the robot would need to turn to rescue the victim. This process starts with a function cansearch.m, which is a matlab file that is called from within the C++ code. As discussed earlier, the robot goes in to search mode every 1.5 meters. It then takes 7 pictures. Each time a picture is taken this code is called to determine the necessary information. If there is a can, the robot will then go and retrieve it, if not the robot will continue to search the unknown area. The code in the canseach.m file carries out 8 basic steps as shown in Figure 3-1. The code used to perform the digital image processing can be found on the project website [1]

[image: image7]
Figure 3-1

Overall block diagram of the cansearch.m program

1. Original image

2. Breaking down the image to the green color plane

3. Noise reduction

4. Edge detection

5. Dilation

6. Template generation

7. Correlation method

8. Resulting output of a “positive can” picture (a single white pixel)

An important thing to note is that this program revolves around number 7, the correlation method. Steps 1-6 are executed to make the correlation method work correctly.

3.1 Acquiring the original image

To get the original image, the program Dorgem is used [2]. This software allows the user to run the webcam using designated ports, and allows matlab to grab an image at anytime. To read in an image in matlab from the webcam via Dorgem all that is required is the following line of matlab code:

>>Original_image=imread(‘http://localhost:8080/’);

Every time that line is called it will grab the most recent image from the webcam using the designated port 8080.

3.2 the color planes

The steps 2 through 5 are preformed to reduce the original color image so that only the unique characteristics of a red can remain. The procedure is used to distinguish the can within a noisy environment. The goal of the code is to break down the image so only the border of the can remains. Once the border is the only thing remaining the correlation method will do a matching algorithm and determine if a match can be made.

The first step in accomplishing the goal above is to break the color image into its 3 color planes.

[image: image8]
Figure 3-2

Monkey example of the 3 color planes

As seen in figure 3-2 above, a color image can be broken into its 3 color planes red, green and blue. A high value (pixel value = 1) will appear white. For example the monkey’s red nose has a very high concentration of red pixels. This is shown in the red color plane picture where his nose is white. A low value (pixel value = 0) is shown with the color black. This can be seen clearly in the blue color plane, as there are no high blue pixel values in the nose. The color planes become useful in the search for a red can. This method is applied within the project with the following results shown in figure 3-3.

[image: image9]
Figure 3-3

Color plane example with actual victim (can).

It was found that the floor makes the digital image processing very difficult. The tile is an off white color which has a large amount of red pixels. The glare seen in figure 3-3 is also a frequently occurring problem. The glare is white, and contains a high concentration of all color’s. In order to pick out the red can more efficiently, the image is reduced into only the green plane which has the best distinction between can and tile, or background.

3.3 Noise reduction
The background in the images is very complex. Some of the reoccurring objects are the flakes in the tiles, lines created by joining two tiles together, chair or desk legs, and glare on the tiles. These images produce a fair amount of noise as seen in the lower left hand corner of figure 3-4. Noise reduction yields the superior image shown in the lower right image of figure 3-4.

[image: image10]
Figure 3-4

(Top) Green pixel image. (Left) Edge detection with no noise reduction. (Right) Edge detection with noise reduction.

To implement noise reduction, a threshold value is set. This value determines the pixels in the green pixel image that will have a new value of either a 1 or 0 (black or white). This method reduces the amount of information in the picture and the image is saved with just the desired pixels being white. The new image is then eroded with the strel matlab function. This function manipulates the picture and removes any random pixels that are not found in large clusters. Looking at the original image above, the can is a large black grouping of pixels surrounded by a white border. However the line in the center of the image is smaller concentration of black pixels, and hence will be taken out. The usefulness of this function comes with the trade off of removing to little or to much of the information. For example, the setting used in this program removes the majority of noise, but the detail of the can’s borders is lost. The function does not remove enough detail of the can for it to be distorted. Any loss of detail will be compensated for in the following sections.

3.4 Edge Detection
Edge detection is a process by which high frequencies are picked out of an image and marked. As the image is analyzed, the changes from pixel to pixel determine the frequency. When the pixels are relatively the same value, a low frequency is produced. A sudden change from pixel to pixel is marked as a high frequency. Where high frequencies are detected, white pixels appear at that location. As the image is analyzed the white pixels will form lines, lines start to form borders, and borders then become objects. Figure 3-4 above shows an example of edge detecting finding a can within the image.

3.5 Dilation
Dilation is used to make sure all boundaries are connected. This process expands the white pixels in the image making the boundaries of the can widen as shown in Figure 3-5. After dilation, the boundaries of the can are clearly distinguishable. The previous steps are done in order to use the correlation method. The dilation is the last change done to the image itself in order to make the correlation method work correctly and efficiently. The next section details how the can in the images can be identified.

[image: image11]
Figure 3-5

Dilating the edge detected image

3.6 Template generator
Templates are used to simulate a correct boundary of the can. A series of 23 templates are created each with a13 by 7 pixel ratio. The 13 by 7 ratio ensures that the template boundary is the same size of a standard 12 oz. can. Each of the templates are 6 pixels larger then the last. The different sized templates are used to determine the size of can. If the can is relatively close, a larger template is needed to model the correct size. As the can gets farther away from the camera, it will continue to decrease in size. Figure 3-6 shows all the templates next to each other. The image clearly shows the differences of the template sizes.

[image: image12]
Figure 3-6

The 23 temples created in the template generator

3.7 The Correlation Method
Correlation is a process which indicates the strength and direction of a linear relationship between two objects. In digital image processing, the correlation method is used to determine the similarities of two images. In this project the method is used to compare the templates generated with any boundaries that exist in an image. The process shifts the template through the images that have been modified. Figure 3-7 shows templates as they are shifted through a test image taken.

[image: image13]
Figure 3-7

Correlation Method: Template matching and output
As shown in figure 3-7, the template generator continually runs templates through the image until a match is found. The bottom left image shows the dilated image with a matching template displayed in the upper left hand corner. When a template matches the image its over, the correlation method will set the center pixel to a value of 1 in a new image. After the correlation method is finished, the new image created is analyzed to determine if a match was found. When the image contains a singe white dot, the center the victim is identified. Figure 3-7 shown above shows a single white dot in the middle of the blue circle.

3.8 Calculation of the angle and distance to the victim

When a victim is found through the correlation method, information is extracted to determine how far and at which angle the can is to the camera. Figure 3-8 shows how the information extracted is used to determine where the can is.
[image: image1.emf]MOVEMENT

C

O

M

O

U

T

C

O

M

I

N

Cooperative

Autonomous

Robot ‘1’

WHEEL ROTATION

U

S

E

R

I

N

P

U

T

S

TOOL MANIPULATION

T

O

O

L

F

E

E

D

B

A

C

K

SENSOR INPUTS

WHEEL ROTATION

DISPLAY

MOVEMENT

C

O

M

O

U

T

C

O

M

I

N

Cooperative

Autonomous

Robot ‘2'

WHEEL ROTATION

U

S

E

R

I

N

P

U

T

S

TOOL MANIPULATION

T

O

O

L

F

E

E

D

B

A

C

K

DISPLAY

MOVEMENT

C

O

M

O

U

T

C

O

M

I

N

Cooperative

Autonomous

Robot ‘N’

WHEEL ROTATION

U

S

E

R

I

N

P

U

T

S

TOOL MANIPULATION

T

O

O

L

F

E

E

D

B

A

C

K

DISPLAY

CAMERA INPUT

SENSOR INPUTS

WHEEL ROTATION

CAMERA INPUT

SENSOR INPUTS

WHEEL ROTATION

CAMERA INPUT

Figure 3-8

Relation of the distance and angle to the actual robot’s camera
The distance “d” is dependant on the template which gave a positive match. The smaller the template used, the further the can is from the camera, and therefore “d” will be larger. The actual distances assigned to each template were recorded from experimentation. “L” is determined from a pixel to distance ratio. This ratio was created through testing and creating a line of best fit for the data points. It was determined that the following equation holds true and worked with the application. The data had to be adjusted in the C++ code to be more accurate. It proved to be accurate within a few inches and worked well enough for the robot to run into the can. The calculation method is shown below.

Distance(cm)=.2255(pixels from center of image)-1.528

Lastly, the angle is determined by the arcsine(L/d). The distance “d” and the angle the robot needs to turn are is now known and the digital image processing portion is now complete. The final step is to export the data from matlab into C++.

3.9 Communication between matlab and C++
TCP/UDP/IP Toolbox 2.0.5 is used to accomplish the task of sending data from matlab to C++[3]. The code was used to bridge the gap of matlab to C++ can be found on the project website [1]. The file C_M is the code in C++ that will send the message “do” to matlab. The file M_C runs in matlab and is constantly waiting for the for the C++ code to send the “do” command. When the message is receive matlab runs the “cansearch.m” file, and sends a string of data back to C++ which includes:

data=[can_positive, dist, angle, direction].

The can_positive is a flag that is set high when there is a can in the image. Distance and angle are how far the robot needs to turn and travel to reach the can. Direction is if the can is on the left half of the picture, exactly in the center, or in the right half.

The data string sent to C++ can then be broken and resaved as individual variables and the appropriate actions can then be taken.

4. Communication

Communication is done between the laptop mounted on the robot and a stationary laptop. This communication allows the stationary laptop to build a map as well as the laptop on the robot. The stationary laptop mimics a secondary robot that could be added in further projects.

 4.1 Adhoc
For communication the ad hoc mode built into the wireless card of the laptop was utilized. A peer to peer connection was created, and over that connection data was exchanged from one computer to the other. The max range for the ad hoc mode is 100 feet, but when tests were done, a max of 70 feet was reached.

4.2 UDP Mulitcastion
To send and receive data, UDP Multicasting was used. UDP multicasting was chosen due to the fact that it was much easier to program than TCIP communication. The only benefit that TCIP has over UDP is the fact that with TCIP, the computer will send a message to the other computer confirming it that the data was received.

In UDP, sockets are created in which data can then be sent and received. In general, a socket opens up an available port of the computer and then utilizes that port. Once a socket is created, data can be sent or received.

To send data a string must be utilized. Once the string is created the command line UDPSendAny (socket, string, size_string, ip_address) will then be used to send the string. The string is sent out of the port the socket created and received by the other computer from the socket that was created on the other computer.

To access the received string the system checks the status of the receiving port. If the port has data, use command UDPRecvAny(socket, string, size_string, sender_address). This will then take the sent string and save it to the computer.

To utilize what is sent in the string, it must be split into sections. To do so the functions istrstream is used. This will split the string according to spaces. Then initialize variables and have the data saved in the correct variable name. All the code that is used to do the communication can be found on the project website [1].
5. Mapping
Mapping is done by utilizing the 8 ultrasonic sensors on the front of the robot, shown in Figure 5-1.
 [image: image14.png]

Figure 5-1 – Ultrasonic Sensors
The sonar data is recorded and then sent via the wireless communication to another robot or laptop. The data sent includes the x position, y position, angle, and data of each ultrasonic sensor. When the information is sent to a second computer it must then be formatted in a text file. To do that, the ofstream function is utilized. This function allows the giant string that is sent from a laptop to be broken down and stored into the correct variables.

 Once the new text file is created it can be written to the text file by utilizing the command ‘out<<.’ The header of the text file is already written to the text file. The header initializes the settings for Mapviewer [4] by telling the program where and how many sonar rings there are on the robot. Once this header is set up, the x, y, and theta coordinated of the robot and the information from the sonar rings are then inserted to the text file. An example of the text file can be seen in Figure 5-2.

[image: image20.emf]X=0

=

L

d

ө

SARA

L

d

ө

ө=arcsine(L / d)

•“d” is determined by the size of the template used

•“L” is determined by a pixel to distance ratio

•“ө” is determined by trigonometry.

[image: image15]
Figure 5-2
Example text file for Mapviewer
Sonar data received and sent must be, formatted correctly before it is put into the text file. To do so each variable must be put into strings so they can be appended to the text file. By appending the information, it does not matter if the text file is being used or not. This means that a map can be made at any given time and data will still be stored regardless. The data will continue to be stored as long as the robot is running. To generate a map, Mapviewer is used to combine the robot’s information.
5.1 Mapviewer

Mapviewer is an open source program created by Shane O’Sullivan. The program works by taking the information from the robot and converting it into a map. The program can interpret the data as long as it is in the form shown in figure 5-2. Sonar information can often be misleading or inaccurate. Mapviewer compensates for these imperfections. When the map is produced it uses a blue and grayscale color to describe the environment. The blue color is used to detail any area that was not explored. The explored area ranges from white to black. A black value shows that there is an object at that location. These then serve as areas that the robot cannot travel through. When the map is white, it confirms that nothing is in the approximate area. The robot can successfully travel through these areas without hitting an obstacle. Grey is produced in areas where there are corners, reflections of walls, and any other location where the data is flawed. The main cause of grey area results in the ultrasonic waves reflecting off the walls and not returning to the sensor. Because of this, there tends to be a lot of grey area around the walls. An example map created in testing is shown in figure 5-3.

[image: image16]
Figure 5-3 Example map from testing

(Left) Testing Environment (Top Right) Map Created

(Bottom Right) Drawn to Scale Map

Figure 5-3 shows exactly what the mapped environment looks like. The black walls provide a boundary that will prevent the robot from going into any grey area. Mapviewer allows the robot to effectively plan paths through a mapped environment. This will become useful as the project expands, giving the robot much more complex navigation abilities.
6. Results

6.1 Navigation

The robot has the ability to follow a wall with given thresholds. All the code for the navigation can be found on the project website [1]. Navigation was one of the first sections to be completed. Through many test runs, the software was adjusted to ensure that the robot can successfully maneuver through a room. During test runs the robot avoided any obstacles within the specified distances. It was also able to stay within its proper thresholds while moving. As navigation was a large portion of the project, it has been tested over the span of two months. The experimental proof of successful navigation were the experiments in which the robot was introduce into an environment with obstacles and a dead end, such as that shown in Figure 6-1. In these experiments the robot followed the right wall and obstacles until it navigated the entire perimeter of the space and returned to the starting point. Furthermore, while navigating the space it acquired data to generate a map. The results of a particular experiment are also shown in Figure 6-1.
[image: image21.emf]If a matching template is used, a single

Pixel will be the resulting output.

If a matching template is used, a single

Pixel will be the resulting output.

[image: image17.png]

[image: image18.jpg]

 [image: image19.jpg]

Figure 6-1

Successful Navigation and Mapping

(Top) Map generated with MapViewer

(Bottom Left) Front View (Bottom Right) Rear View

6.2 Mapping

The robot records the sonar information while navigating an unknown area. The information is then appended to a text file that is compatible with Mapviewer. Figure 5-3 verifies a working map that was recorded during a test run. There is also an example text file located on the project website [1]. This portion of the project was successfully implemented.

6.3 Digital Image Processing

The digital image processing (DIP) has been constantly tested. The correct operation of the DIP was verified by 2 tests.

The first test was completed by running the search algorithm multiple times where the robot was stationary. Through this process it was possible to verify that the DIP software was able to pick out a victim out of a variety of backgrounds. The victim was placed in different areas of the robot’s sight to determine which locations the victim could or could not be found. Through testing it was determined that the victim was found nearly every time. There were a few instances where background noise or objects would trigger the DIP software to return a false positive. Examples included glare from lighting issues, color changes in the tile, and objects such as shoes that have similar dimensions of the can. The majority of the time, the DIP software was able to work without any issues. Due to time constraints, the DIP code was not successfully finished, but it is possible through better code to avoid the few instances where problems occur.

The second test involved measuring the error of the victim’s location. This was done by having the robot find a victim, turn the calculated amount, and then approach the victim. By doing this it was possible to record the accuracy of the information returned from Matlab. The distance that the robot had to travel to reach the victim was fairly accurate. The robot’s distance traveled was within 8 inches. The DIP software overcompensated for the distance to ensure that the robot would make it to the victim. The calculated distance to travel was fairly consistent and within specifications. The robot was always able to travel the minimum distance in order to funnel the victim into the gripper. The second portion of the test involved measuring the error in the angle that the robot turned. The error calculated was more then desired. Depending on the can’s location in the robot’s view and the distance it was away from the robot contributed to the accuracy of the DIP software. At 1.5 meters away from the robot, the largest error measured was 3 inches which is roughly 3 degrees. The maximum angle error desired was 1 degree for the 1.5 meters distance. This must be addressed in future projects.
6.4 Communication

The communication scheme was tested using two laptops. They were both able to send and receive data from one another. They were also able to format the received and transmitted data and append it to a text file so that it can be utilized in Mapviewer. The communication would work up to roughly 70 feet. This was determined by walking with one of the laptops and seeing how far they could be apart before the signal faded.

While communication worked independent of the other code, there were issues when trying to integrate the communication with the rest of the code. Errors occurred, and due to time restrictions the errors could not be worked out. The errors that occurred would cause the code to freeze and the robot to continue moving without any software controlling it. This resulted in the robot going straight towards obstacles and walls. The communication code, as well as the integrated (not working) code, can be found on the website [1].
6.5 Future Work

This was a first year project and was designed and implemented from the ground up. As this project will continue in future years at Bradley University there is the opportunity to improve and build upon this year’s success. There are a few things that should be done immediately.

Currently the mapping is done manually through Mapviewer. The C code for this software is open source and is available to be modified. With this, one can integrate an algorithm that automates this mapping process. The biggest benefit to this is the ability to use the path planning algorithm that is inherent inside Mapviewer. Also, the DIP should be altered to eliminate lighting issues. Having a clear distinction between the foreground and background is essential. Glare is also a major problem for the DIP code. Mounting a light source on the robot could be a possible solution to these problems. Furthermore, Matlab code can be written to improve the can-finding algorithm. At this point the code checks only for the dimension of the can. There are a number of additional checks that can be done to make the DIP algorithm more consistent and accurate when finding the victim.
Something of less priority is having the robot use its grippers to grasp the victim. Using a simple PWM signal is all that would be needed to complete this task. The communication needs to be integrated with the rest of the C++ code so that two robots or laptops can send and receive map data. Once the previously stated tasks are complete, a second robot should be bought so that they can cooperatively map and navigate an environment.
7. Conclusion

Overall, all separate parts of the project, mapping, obstacle avoidance, digital image processing, and communication, were all individually completed. During the integration of all the parts there were a few difficulties. The integration of mapping, obstacle avoidance, and D.I.P. all worked correctly, but the integration of communication posed some major problems. Given time constraints this problem was not resolved. The current project was successfully able to navigate and map through an unknown terrain and locate and find a victim. This project has laid a strong foundation for any future autonomous search and rescue applications to take place at Bradley University. It is hoped that future groups to work on this project will have the same desire and drive that the current team had in starting this project. Good Luck!

References
[1]
Cooperative Autonomous Vehicles in Search and Rescue Applications Project Website
http://ee1.bradley.edu/projects/proj2007/car/index.html
[2]
Dorgem Website

http://dorgem.sourceforge.net/
[3]
TCP/UDP/IP Toolbox 2.0.5

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objec tId=345&objectType=file
[4]
MapViewer by Shane O’Sullivan

http://www.skynet.ie/%7Esos/

1 Meter

robotrun										

numsonars	8		(------------ Identifies the number of sonar		

start	sonar									

80	140	90	(------------ Sonar location and angle relative to robot		

130	125	45								

155	80	30								

185	30	15								

185	-30	-15								

155	-80	-30								

130	-125	-45								

80	-140	-90								

end										

robotradius	200									

DATA	SONAR		(------------ Beginning of Data recorded				

0	0	0	1088	1424	3865	2267	5000	1392 	5000

2.01651	-0.96627	-0.966809	1088	1424	3865	2267	5000	1392	5000

9.01553	-0.848707	-0.966809	1088	1431	3870	2267	5000	1392	5000

18.0143	-0.697556	-0.966809	1088	1431	3870	2262	1451	1383	5000

29.0295	-1.51267	-0.966809	1088	1431	3870	2262	1451	1383	1434

.5

(Meters)

.2

.3

�

�

�

�

�

�

�

PAGE
2

[image: image22.emf]

[image: image23.emf]

[image: image24.emf]Green Red Blue

[image: image25.emf]Green Red Blue

[image: image26.emf]1. 2. 3. 4.

5.

6.

7.

8.

1. 2. 3. 4.

5.

6.

7.

8.

[image: image27.png]Table

Recycle Bin

Trash Can

Door

/O

Bookshelf

[image: image28.jpg]

[image: image29.jpg]

_1239990184.vsd
SEARCH

Capture Image

Victim Found?

RESCUE

Yes

Rotate Robot 30° Right

No

Total Rotation
 = 180°?

No

Rotate Robot back to initial position

Yes

MAP

Rotate 90° left

_1239995462.vsd
Rescue

Move Distance to Victim

Return to Initial Starting Point

Turn Robot to Face Victim

_1240000026.vsd
START UP

SEARCH

COM

Map

Rescue

Victim
Found?

No

Yes

_1239990517.vsd
COMMUNICATION

Communication Objectives

Retrieve Map Information

Send Map Information

Make Map

Make Map

_1227632375.vsd
Cooperative
Autonomous
Robot ‘1’

SENSOR INPUTS

WHEEL ROTATION

DISPLAY

MOVEMENT

MOVEMENT

COM OUT

COM OUT

COM IN

Cooperative
Autonomous
Robot ‘2'

WHEEL ROTATION

USER INPUTS

TOOL MANIPULATION

TOOL FEEDBACK

DISPLAY

MOVEMENT

COM OUT

COM IN

COM IN

WHEEL ROTATION

USER INPUTS

TOOL MANIPULATION

TOOL FEEDBACK

Cooperative
Autonomous
Robot ‘N’

WHEEL ROTATION

USER INPUTS

TOOL MANIPULATION

TOOL FEEDBACK

SENSOR INPUTS

WHEEL ROTATION

DISPLAY

CAMERA INPUT

SENSOR INPUTS

WHEEL ROTATION

CAMERA INPUT

CAMERA INPUT

